
Algorithms to Generate Interlocking Three-Dimensional
Puzzles

 Nkosi Gumede
CSC4003W Literature Review

University of Cape Town, 2019

gmdnko003@myuct.ac.za

ABSTRACT

This paper takes a look at various pieces of literature on the topic

of interlocking printable three-dimensional (3D) puzzles.

Interlocking 3D puzzles lock solid pieces together to form an

object. The puzzle pieces must be assembled in a specific order

and the final object must be disassembled by the reverse of that

order. Similar to the way a stack works, the last piece in the

puzzle must be the first piece taken out. Known approaches to

generate interlocking 3D puzzles take too long. We will further

discuss the history and relevance of this problem in relation to

algorithms in computer science.

General Flow of Work:

1) Get a triangle mesh object. 2) Voxelize the object. 3) Apply a

relevant puzzle generating algorithm. 4) Generate multiple voxel

pieces. 5) Triangulate the voxel pieces. 6) Add a triangulated

outer surface (optional). 7) 3D-print the puzzle pieces.

CR Concepts

 Computer-aided design - Usage of computer

applications to guide the design of a project

 3D printing - Triangularization of elements depicted in

the third dimension for the purpose of printing

 Interlocking 3D puzzle algorithms - Optimization of

application and computation using multi-core computer

architectures

Keywords

Interlocking puzzles; 3D printing; Computational geometry.

1. INTRODUCTION AND

MOTIVATION

This literature review focuses on algorithms to generate puzzles

with the following two attributes: 1) Interlockable (assembly and

disassembly are required to solve the puzzle). 2) 3-Dimensional

(the third dimension should constrain all generated puzzle pieces).

Finding a valid interlocking puzzle given an enclosing volume for

a target shape is a computational geometry problem that has

already been solved by Song et al [14]. However, their solution

requires a blocky outer surface aligned on a regular grid that can

take up to 10 hours to generate. Our research project will explore

speeding up the computation by using multiple CPUs in a cluster

and exploiting GPU co-processors. We aim to generalize the

algorithm to allow a detailed non-voxelized outer surface that

more closely resembles the target shape. The final design will be

realized on a 3D printer. This will require a large amount of

geometric post-processing.

2. ALGORITHMS OF PREVIOUS

APPROACHES

Song et al. [14] define interlocking puzzles as an assembly of

puzzle pieces (with at least three pieces) whereby there is only

one movable puzzle piece; all other puzzle pieces are immobilized

relative to one another. Their research publication can be regarded

as the most relevant to date with respect to algorithms for

generating 3D interlockable puzzles using voxels. A voxel can be

described as a volume element – a 3D pixel/ cube with all six

sides being of equal length and breadth.

In oversimplifying the problem at hand we can re-imagine the

solution proposed by Song et al [14]. Each one of the six sides

represents a direction in which a voxel can move in or out of the

puzzle – up, down, left, right, forward or backward. We can call

these directions the six degrees of freedom. To create an

interlocking structure, the final piece in the puzzle should have

only one degree of freedom; that is, it should be allowed to move

in only one direction either into or out of the puzzle. The final

piece should also block all n degrees of freedom of the pieces

already in the puzzle. By applying this method recursively, we can

create a puzzle using 3 or more puzzle pieces.

Below, we discuss previous approaches to generate interlocking

puzzles. Although our focus is on 3D puzzles, we imagine that 2-

Dimensional (2D) puzzles are also relevant as we can represent

them in the third dimension by constraining them on the z-axis.

The subsections are split by the approach each algorithm used to

generate interlocking puzzles.

2.1. Exhaustive Search

The exhaustive search approach describes the naive method of

generating puzzle pieces. The set of valid puzzle pieces are

generated iteratively by going through the set of all possibilities.

This approach was commonplace in the early days of puzzle

generation. Due to its inefficiency, exhaustive searching has since

been replaced by more efficient approaches in recent times. Little

is known about the origins of interlocking puzzles. Many believe

that they were invented by the Chinese, who used wood to build

earthquake-resistant homes without nails. Edwin Wyatt, author of

mailto:gmdnko003@myuct.ac.za

Puzzles in Wood, coined the term ‘burr’ to describe puzzles which

resemble a burr seed.

In 1997, IBM Research [4] launched the burr puzzles site. IBM

Research defines burr puzzles as “consisting of at least three rods

intersecting at right angles”. Burr puzzle algorithms attempted to

discover new interlocking puzzles based on exhaustive search.

There are various types of three-piece and six-piece burr puzzles.

The burr puzzles site extensively covers Bill Cutler’s

contributions to burr puzzles. Cutler [2] also covers previous

attempts to discover new interlocking puzzles based on exhaustive

search. Bill Cutler introduced a large number of six-piece

interlocking structures. He shows that there 314 ways to assemble

25 notchable pieces to make a six-piece burr puzzle by assessing

all permutations through exhaustively searching for puzzle pieces

which meet the criteria for interlocking. Bill Cutler [2] outlines

that there are two approaches for constructing all assemblies via a

computer program: 1) The program determines every set of six

pieces and possible assemblies, then checks for a solution. 2) The

program constructs each assembly of six pieces, analyzing it

immediately. Approach 2 was selected as it saves time.

Rover [11] created the Burr Tools computer software to help solve

certain puzzle designs by trial-and-error (an exhaustive search

approach). The program supports “square or dice shaped units,

spheres, prisms with an equilateral triangle as base or 2 grids that

use tetrahedra”. The program allows users to construct puzzle

pieces and target shapes visually. Users can then use the puzzle

solver to check for the number of assemblies, solutions and the

time taken to complete a generated puzzle.

2.2. Construction Approach

The construction approach refers to a method of generating

interlocking puzzle pieces recursively from a source object. This

can be done by dividing the source object into its constituent

puzzle pieces (top-down approach) or by creating new puzzle

pieces from the source object (bottom-up approach). Song et al.

[14] explore a recursive constructive approach for devising new

interlocking geometries that directly guarantee the validity of the

interlocking instead of exhaustive testing it. The algorithm takes a

voxelized shape (S) as input and iteratively extracts pieces P1, P2,

…, Pn. Rn (the remaining part of S) is the last piece ie. S → [P1,

…, Pn, Rn]. The algorithm requires local interlocking among Pi,

Pi+1, and the remaining part which is denoted as Ri+1. The idea

of the algorithm is to pick a seed voxel, ensure its blocking/

mobility, and expand the key parts recursively. Wang et al. [16]

present a general framework for designing interlocking structures

which use Direction Blocking Graphs and analysis tools. They use

an algorithm outlined in section 4 to design an interlocking

assembly from a given shape by generating parts P1,…, Pn, Rn.

Much like Song et al. [14] first, they generate the key (only

movable part) and then the parts Pi and Ri (where i>1). The main

difference between the two approaches is the design of the graphs

used to ensure interlocking – all previous parts are used as

opposed to using only the most recently added part.

Song et al. [15] delve further into the matter of generating

interlocking puzzle pieces while also focusing on their ability to

be 3D printed. They take a watertight surface mesh as input and

place a 3D grid within the object’s space to voxelize it. They

deform the geometry locally to cater to fragments. Neighbouring

voxel shape connection strength is calculated by analysis local

shapes and a graph is built. The important features of the model

are realized on saliency graph. The construction of puzzle pieces

is guided by the graphs, reassigning boundary voxels (for

aesthetics) and constructive solid geometry (CSG) intersection.

Interlocking does not necessarily have to be produced with

voxelized pieces. This is demonstrated by Lau et al. [9] who

converted furniture models into parts and connectors using lexical

and structural analysis. Their algorithm uses lexical analysis to

identify primitive shapes (processed as tokens). Then, structural

analysis to generate fabricatable parts and connectors

automatically. The output of their algorithm can also generate user

manuals on how to assemble furniture from constituent

components via the bottom-up approach.

2.3. Curve Matching Approach

The mapping approach refers to a method of matching puzzle

pieces by assessing the curves on their edges. This information is

then processed as input to solve puzzles according to the given

algorithm. Curve matching normally employs a bottom-up

approach, assembling target shapes from puzzle pieces.

Kong and Kimia [8] developed algorithms to solve 2D/3D puzzles

using curve matching. First, they “define an affinity measure for a

pair of pieces in two stages, one based on a coarse-scale

representation of curves and one based on a fine-scale elastic

curve matching method”. The algorithm eliminates pieces with

overlapping boundaries and forms a rank-ordered list of pairs. The

puzzle solution is a “recursive grouping of triples using a best-first

search strategy”. In the case of 3D curve matching, a laser is used

to scan 3D fragments and the 2D method of curve matching is

applied over the z-axis. Sagiroglu and Ercil [12] have also

developed an algorithm for 2D/3D fragment assembly. Their

algorithm uses visual information such as “texture, colour, and

continuity of lines” in addition to geometrical information. They

generate the best assembly of a puzzle by optimizing the affinity

(or suitability) value. They use an algorithm with parameters such

as texture and colour to predict the region extending a puzzle

piece and use that prediction to find a true neighbouring puzzle

piece. The solution maximizes the correlation between predictions

and actual puzzle pieces. Their algorithm is outlined at the end of

section 4 as follows: “1) Place the pieces on board B. 2) Find the

best transform for a randomly selected piece t using the presented

method. 3) If there exists a piece that can be moved, go to step 2.

4) Select a piece and transform it. 5) Go to step 2, until the puzzle

is uniquely assembled even if all pieces are tried in step 4.”

In 1988, Wolfson et al. [17] solved the assembly of large 2D

jigsaw puzzles using curve matching and combinatorial

optimization techniques. Each puzzle piece is photographed and

immediately fed into the algorithm which assembles an apictorial

(without a picture) puzzle as the puzzle piece come. The

algorithm uses only boundary data to match neighbouring puzzle

pieces. After preprocessing, data is parsed into equations which

conduct local matching. The puzzle assembly algorithm first

assembles the frame and then uses it a starting point for the

assembly of the entire puzzle. In 2002, Goldberg et al. [3] also

worked on algorithms to assemble 2D apictorial jigsaw puzzles by

boundary data alone. Their algorithm could solve more complex

puzzles with a maximum of 200 pieces by applying new

techniques such as “robust fiducial points, highest-confidence-

first search, and frequent global re-optimization of partial

solutions”. They found that the fiducial point comparison

approach of global matching (rejected by Wolfson et al. [17]) was

significantly faster and more robust to scanning noise. Their

algorithm works by identifying the inflexion points, ellipse

centres, and tangent points on a tab (indent or outdent) and

minimizing the distance between pairs of corresponding points.

2.4. Geometric Design Approach

Stewart Coffin is widely regarded as the world’s best designer of

interlocking puzzles. In 1990, he produced a book [1], which

described interlocking cubes. His book motivated the study of

geometric mechanics producing interlocking. The geometric

design approach refers to using lines and curves generated by a

mathematical equation to generate puzzle pieces. Lo et al. [10]

used the geometric design approach to generate 3D polyomino

puzzles. They created shell-based 3D puzzles with polyominoes

as the component shape of the puzzle pieces. The algorithm works

as follows; they first apply quad-based surface parametrization to

the input solid and tile the parametrized surface with

polyominoes. Then, construct a tiled surface inside the

parameterized shape to fit inside a thick shell volume. Finally, use

associated geometric techniques to construct puzzle pieces

(polyominoes generating via Procedure 1 outlined in section 2),

including the ring-based ordering scheme, the motion-space

analysis technique, and the tab and blank construction method.

The final puzzle must be buildable, and maintainable.

Xin et al. [5] also explored the governing mechanics of

interlocking puzzles using geometric methods. They replicated

and connected pre-defined six-piece burr structures to create

larger interlocking puzzles from 3D models. First, they embed a

network of knots into a given 3D model. Then, the 3D model is

split according to its geometry. The method requires one to first

manually design and construct a grid-based graph inside a given

3D shape. The method can put a six-piece burr puzzle at each grid

point and connect them to guarantee the interlocking. Their paper

describes both a single-knot and multi-know burr puzzle. Zhang

and Balkcom [18] explore a solution to assemble voxelized

interlocking structures using joints (pairs of male-female

connectors on adjacent voxels) to guarantee interlocking and

assembly order. The algorithm breaks models into layers and

sequentially builds layers using block types to restrict the mobility

of puzzle pieces.

3. DISCUSSION OF PREVIOUS

APPROACHES
This section discusses the important characteristics of the 3D

interlocking puzzle algorithms according to our survey of known

interlockable structures. We will compare and contrast the

algorithms in terms of applicability and efficiency; that is, how

relevant the algorithm is to 3D printing and how many

computational operations (or how much time in seconds) it may

take to generate the puzzle pieces after the original object (which

may be represented as a triangular mesh) has been served into the

algorithm as input.

3.1. Exhaustive Search

The analyses of Bill Cutler’s algorithms [4] are categorized and

presented as follows:

Name Size Author Date Runtime

Notchabl

e, Solid

“JRM”

314

solutions

Bill

Cutler &

Tom

O’Beirne

(manual

&

compute

r)

Fall

1974

Not

available

General,

Solid

“CSIAM

”

119 979

solutions

Bill

Cutler

(comput

er) &

Arthur

Cross

(random

manual

checking

)

Winte

r 1975

5 minutes on

IBM

mainframe

Notchabl

e, Holey

“NOTC”

13 354 991

assemblies

Bill

Cutler

(comput

er)

26

March

1987

– 6

June

1987

2 months on

PC AT

General,

Holey

“HB6”

35 657 131 2

35

assemblies

Bill

Cutler &

others

(comput

er)

Octob

er

1987

to 4

Augus

t 1990

The

equivalent

of 62.5

years on PC

AT

(approximat

ely 2.5 years

more

recently)

On average, Rover [11] computes assemblies and dis-assemblies

in a mere matter of seconds. It is important to note that the

runtime of exhaustive search algorithms is highly dependent on

the size of the problem at hand. Exhaustive search algorithms for

generating puzzles normally run at least n operations (to generate

or assemble each puzzle piece), where n is the number of elements

the algorithm has to process. Since the Burr Tools software is not

open-source, it was not possible to assess its algorithm in detail.

3.2. Construction Approach

The Song et al. [14] interlocking structure is decentralized and

thus can adapt more flexibly to complex 3D shapes and

topologies. It generates recursive interlocking shapes with

different Ns (number of voxels) and Ks (number of puzzle

pieces). Their method works with a large variation of Ns and m

(average puzzle piece size). Time complexity depends on a

combination of N, K, m and the target shape. Wang et al. [16]

tests for global interlocking in polynomial time complexity. Their

approach generates puzzle pieces much faster than the previous

Song et al. and is more generally applicable. The primary

disadvantage is the ease of implementation. The latest Song et al.

[15] uses more or less the same approach with additional aesthetic

and 3D printing requirements. Their largest structure (11 x 16 x

11 volume resolution consisting of 20 pieces and 44 973 model

vertices) took a decent 150 seconds to generate via C++ on a

3.4GHz CPU with 8GB memory. Lau et al. [9] tested their

constructive approach of generating 3D furniture models with a

less than 100% success rate. They claim that adding new

production rules to cater for the unsuccessful attempts is effective

in producing a 100% success rate. The average runtime was less

than 1 second. Voxelization occupied the majority of the runtime.

3.3. Curve Matching Approach

Kong and Kimia [8] apply their algorithm to the problem of

reassembling pieces of a broken ceramic tile. The algorithm

contains a for loop in a triply nested if-statement which can be

expected to compute at least Big-O of n operations. The Sagiroglu

and Ercil [12] method’s time complexity is similar to that of Kong

and Kimia. They assert that the main drawback is that multiple

solutions to the problem are possible depending on how the puzzle

pieces are placed on the board. The additional parameters and

complex equations make it likely to be a relatively slow curve

matching approach. The time complexity of the algorithm is

highly dependent on the number of puzzle pieces.

Wolfson et al. [17] state that the time complexity of their

algorithm is “O(max(K^3, K^2.m log m) + O(N^2 x KBEST x m

log m), where N is the total number of puzzle pieces, K is the

number of frame pieces”. O(m) is the number of sample points on

a boundary curve of a piece. On a Sun Ultra-60 workstation, the

Goldberg et al. [3] algorithm took approximately 3 minutes and

20 minutes to solve 100-piece and 204-piece puzzles respectively.

This can be expected to run in a fraction of the time on a modern

computer.

3.4. Geometric Design Approach

Lo et al. [10] used a procedure called Procedure 1 to assess the

performance of their polyomino tiling algorithm. They used a

table to show the performance on three different 3D models using

a Pentium-4 PC with 3GHz CPU and 512MB memory. The table

showed the time taken to build six different 3D puzzles. Their

largest polyomino, consisting of 325 tiles, took only 0.29 seconds

to generate. The Xin et al. [5] method was used to assemble

various burr puzzles with a varying number of knots and puzzle

pieces. The MegaBox puzzle model took the longest (1405

seconds) to assemble given 64 knots (4 x 4 x 4) and 240 pieces.

The time taken is affected by the nature of the problem at hand as

well as the number of pieces in the puzzle. Zhang and Balkcom

[18] implemented their algorithm in Python and ran it on a

computer with 3.4GHz CPU and 8GB memory. Their most

complex model (a house consisting of 13104 blocks and 40

layers) was designed in only 633 milliseconds. Runtime was

linear relative to the number of voxels.

4. CONCLUSIONS
Since the advent of 3D printing in the 1980s, little research has

been done with respect to algorithms for generating interlocking

3D puzzles. We have explored a few known pieces of research

which delve into the topic of algorithms which generate

interlocking 2D and 3D. Below we assess these algorithms

according to various criteria (in order of appearance):

Algorithm

Name and

Author(s)

Speed of

puzzle

generation

Variability of shape

generation

Ease of

implementation

IBM

Research

(1997)

Very slow (~

2.5 years

maximum)

Burr puzzles Fairly simple

Cutler

(2007)

Very slow (~

2.5 years

maximum)

Six-piece burr

puzzles

Fairly simple

Rover

(2011)

Fast Cubes, spheres,

equilateral triangles,

tetrahedra

Not applicable

(the algorithm is

unavailable)

Song et

al. (2012)

Slow (534.43

minutes to

generate a

bunny when

K=150)

Solid interlocking

voxelized structures

Average

difficulty

Wang et

al. (2017)

Average Wide range of

interlocking

assemblies

Fairly difficult

Song et

al. (2015)

Average Solid interlocking

voxelized structures

Fairly difficult

Lau et al.

(2011)

Extremely

fast (~ > 1

second)

Parts and

connectors

Very difficult

Kong and

Kimia

(2001)

Average Applies only to the

re-assembly of

broken puzzles

Fairly difficult

Sagiroglu

and Ercil

(2006)

Average Applies only to the

re-assembly of

broken puzzles

Difficult

Wolfson

et al.

(1988)

Slower than

average (Big-

O of n^3

maximum)

2D apictorial jigsaw

puzzles

Difficult

Goldberg

et al.

(2002)

Average 2D apictorial jigsaw

puzzles

Difficult

Lo et al.

(2009)

Fairly fast Quad-based 3D

model surfaces

Difficult

Xin et al.

(2011)

Average Six-piece

orthogonal burr

puzzles with a

custom 3D model

outer surface

Fairly simple

Zhang

and

Balkcom

(2016)

Very fast (in

a matter of

milliseconds)

General voxelized

interlocking

structures

Difficult

In assessing the above-mentioned algorithms, it is important to

take note of the date on which they were published. The vast

majority of them were published prior to 2016, during a time

when Moore’s Law still applied. For example, IBM’s PC-AT

Model 2 (manufactured in the 1980s) had only 512kB of RAM,

one floppy disk unit and one hard disk. Modern computers use

multicore architectures and parallelism to achieve speedup. It is

only fair to compare the performance of these algorithms on the

same modern computer to get an accurate representation of how

they perform relative to each other.

We will proceed to employ the algorithm proposed by Song et al.

[14] during the implementation phase of the project. This is due to

its ease of implementation and applicability in solving the

problem of creating 3D printable recursively interlocking puzzles.

Song et al. [15] also present an algorithm worthy of consideration.

Despite being more complex, their algorithm caters for

aesthetically-pleasing design and 3D printing. Their algorithm is

arguably the most suitable to date although Zhang and Balkcom’s

[18] algorithm outperforms most of the others. Kilian et al. [7]

proposed a method to construct surfaces with carved folding by

minimizing the bending energy. Skouras et al. [13] presented an

algorithm for designing interactive surfaces from “flexible

interlocking quadrilateral elements of a single size and shape”.

Should time permit, we will implement such algorithms to add an

outer surface to our voxelized output shape prior to

triangularization for 3D printing.

5. REFERENCES.

[1] COFFIN, S. T. 1990. The Puzzling World of Polyhedral

Dissections. Oxford University Press.

[2] CUTLER, B. 2007. A Computer Analysis of All 6-Piece

Burrs. Available online:

http://billcutlerpuzzles.com/docs/CA6PB/index.html.

[Accessed 23 April 2019]

[3] GOLDBERG, D., MALON, C., AND BERN, M. 2002. A

global approach to automatic solution of jigsaw puzzles. In

Proceedings of the Eighteenth Annual ACM Symposium on

Computational Geometry, 82–87.

[4] IBM RESEARCH, 1997. The burr puzzles site. Available

online: http://www.research.ibm.com/BurrPuzzles/.

[Accessed 23 April 2019]

[5] XIN, S.-Q., LAI, C.-F., FU, C.-W., WONG, T.-T., HE, Y.,

AND COHEN-OR, D. 2011. Making burr puzzles from 3D

models. ACM Tran. on Graphics (SIGGRAPH) 30, 4. Article

97.

[6] SLOCUM, J. 2001. Mechanical puzzles their history and

their challenge. In Katonah Museum of Art. The art of the

puzzle: astounding and confounding

[7] KILIAN, M., FLÖERY, S., CHEN, Z., MITRA, N. J.,

SHEFFER, A., AND POTTMANN, H. 2008. Curved

folding. ACM Tran. on Graphics (SIGGRAPH) 27, 3.

[8] KONG, W., AND KIMIA, B. B. 2001. On solving 2D and

3D puzzles using curve matching. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), vol. 2,

583–590.

[9] LAU, M., OHGAWARA, A., MITANI, J., AND

IGARASHI, T. 2011. Converting 3d furniture models to

fabricatable parts and connectors. ACM Tran. on Graphics

(SIGGRAPH) 30, 4. Article 85.

[10] LO, K.-Y., FU, C.-W., AND LI, H. 2009. 3D Polyomino

puzzle. ACM Tran. on Graphics (SIGGRAPH Asia) 28, 5.

Article 157.

[11] RÖVER, A. 2011. Burr tools. Available online:

http://burrtools.sourceforge.net/. [Accessed 23 April 2019]

[12] SAGIROGLU, M., AND ERCIL, A. 2006. A texture based

matching approach for automated assembly of puzzles. In

18th International Conference on Pattern Recognition, vol. 3,

1036–1041.

[13] SKOURAS, M., COROS, S., GRINSPUN, E., AND

THOMASZEWSKI, B. 2015. Interactive surface design with

interlocking elements. ACM Transactions on Graphics, vol.

34, issue 6, Article 224.

[14] SONG. P., FU. C., AND COHEN-OR. D. 2012. Recursive

Interlocking Puzzles. ACM Transactions on Graphics, Vol.

31, No. 6, Article 128.

[15] SONG, P., FU, Z., LIU, L., AND FU, C. 2015. Printing 3D

objects with interlocking parts. Computer Aided Geometric

Design, Vol. 35 Issue C, 137-148.

[16] WANG, Z., SONG, P., AND PAULY, M. 2018. DESIA: a

general framework for designing interlocking assemblies.

ACM Transactions on Graphics, Vol. 37 Issue 6, No. 191.

[17] WOLFSON, H., SCHONBERG, E., KALVIN, A., AND

LAMDAN, Y. 1988. Solving jigsaw puzzles by computer.

Annals of Operations Research.

[18] ZHANG, Y., AND BALKCOM, D. 2016. Interlocking

structure assembly with voxels. 2173-2180.

10.1109/IROS.2016.7759341.

http://billcutlerpuzzles.com/docs/CA6PB/index.html
http://www.research.ibm.com/BurrPuzzles/
http://burrtools.sourceforge.net/

