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ABSTRACT 

This paper takes a look at various pieces of literature on the topic 

of interlocking printable three-dimensional (3D) puzzles. 

Interlocking 3D puzzles lock solid pieces together to form an 

object. The puzzle pieces must be assembled in a specific order 

and the final object must be disassembled by the reverse of that 

order. Similar to the way a stack works, the last piece in the 

puzzle must be the first piece taken out. Known approaches to 

generate interlocking 3D puzzles take too long. We will further 

discuss the history and relevance of this problem in relation to 

algorithms in computer science.  

 

General Flow of Work: 

1) Get a triangle mesh object. 2) Voxelize the object. 3) Apply a 

relevant puzzle generating algorithm. 4) Generate multiple voxel 

pieces. 5) Triangulate the voxel pieces. 6) Add a triangulated 

outer surface (optional). 7) 3D-print the puzzle pieces. 

 

CR Concepts 

 Computer-aided design - Usage of computer 

applications to guide the design of a project 

 3D printing - Triangularization of elements depicted in 

the third dimension for the purpose of printing 

 Interlocking 3D puzzle algorithms - Optimization of 

application and computation using multi-core computer 

architectures 
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1. INTRODUCTION AND 

MOTIVATION 

This literature review focuses on algorithms to generate puzzles 

with the following two attributes: 1) Interlockable (assembly and 

disassembly are required to solve the puzzle). 2) 3-Dimensional 

(the third dimension should constrain all generated puzzle pieces). 

Finding a valid interlocking puzzle given an enclosing volume for 

a target shape is a computational geometry problem that has 

already been solved by Song et al [14]. However, their solution 

requires a blocky outer surface aligned on a regular grid that can 

take up to 10 hours to generate. Our research project will explore 

speeding up the computation by using multiple CPUs in a cluster 

and exploiting GPU co-processors. We aim to generalize the 

algorithm to allow a detailed non-voxelized outer surface that 

more closely resembles the target shape. The final design will be 

realized on a 3D printer. This will require a large amount of 

geometric post-processing. 

 

2. ALGORITHMS OF PREVIOUS 

APPROACHES 

Song et al. [14] define interlocking puzzles as an assembly of 

puzzle pieces (with at least three pieces) whereby there is only 

one movable puzzle piece; all other puzzle pieces are immobilized 

relative to one another. Their research publication can be regarded 

as the most relevant to date with respect to algorithms for 

generating 3D interlockable puzzles using voxels. A voxel can be 

described as a volume element – a 3D pixel/ cube with all six 

sides being of equal length and breadth.  

 

In oversimplifying the problem at hand we can re-imagine the 

solution proposed by Song et al [14]. Each one of the six sides 

represents a direction in which a voxel can move in or out of the 

puzzle – up, down, left, right, forward or backward. We can call 

these directions the six degrees of freedom. To create an 

interlocking structure, the final piece in the puzzle should have 

only one degree of freedom; that is, it should be allowed to move 

in only one direction either into or out of the puzzle. The final 

piece should also block all n degrees of freedom of the pieces 

already in the puzzle. By applying this method recursively, we can 

create a puzzle using 3 or more puzzle pieces. 

 

Below, we discuss previous approaches to generate interlocking 

puzzles. Although our focus is on 3D puzzles, we imagine that 2-

Dimensional (2D) puzzles are also relevant as we can represent 

them in the third dimension by constraining them on the z-axis. 

The subsections are split by the approach each algorithm used to 

generate interlocking puzzles. 

 

2.1. Exhaustive Search 

The exhaustive search approach describes the naive method of 

generating puzzle pieces. The set of valid puzzle pieces are 

generated iteratively by going through the set of all possibilities. 

This approach was commonplace in the early days of puzzle 

generation. Due to its inefficiency, exhaustive searching has since 

been replaced by more efficient approaches in recent times. Little 

is known about the origins of interlocking puzzles. Many believe 

that they were invented by the Chinese, who used wood to build 

earthquake-resistant homes without nails. Edwin Wyatt, author of 
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Puzzles in Wood, coined the term ‘burr’ to describe puzzles which 

resemble a burr seed. 

 

In 1997, IBM Research [4] launched the burr puzzles site. IBM 

Research defines burr puzzles as “consisting of at least three rods 

intersecting at right angles”. Burr puzzle algorithms attempted to 

discover new interlocking puzzles based on exhaustive search. 

There are various types of three-piece and six-piece burr puzzles. 

The burr puzzles site extensively covers Bill Cutler’s 

contributions to burr puzzles. Cutler [2] also covers previous 

attempts to discover new interlocking puzzles based on exhaustive 

search. Bill Cutler introduced a large number of six-piece 

interlocking structures. He shows that there 314 ways to assemble 

25 notchable pieces to make a six-piece burr puzzle by assessing 

all permutations through exhaustively searching for puzzle pieces 

which meet the criteria for interlocking. Bill Cutler [2] outlines 

that there are two approaches for constructing all assemblies via a 

computer program: 1) The program determines every set of six 

pieces and possible assemblies, then checks for a solution. 2) The 

program constructs each assembly of six pieces, analyzing it 

immediately. Approach 2 was selected as it saves time. 

 

Rover [11] created the Burr Tools computer software to help solve 

certain puzzle designs by trial-and-error (an exhaustive search 

approach). The program supports “square or dice shaped units, 

spheres, prisms with an equilateral triangle as base or 2 grids that 

use tetrahedra”.  The program allows users to construct puzzle 

pieces and target shapes visually. Users can then use the puzzle 

solver to check for the number of assemblies, solutions and the 

time taken to complete a generated puzzle. 

 

2.2. Construction Approach 

The construction approach refers to a method of generating 

interlocking puzzle pieces recursively from a source object. This 

can be done by dividing the source object into its constituent 

puzzle pieces (top-down approach) or by creating new puzzle 

pieces from the source object (bottom-up approach). Song et al. 

[14] explore a recursive constructive approach for devising new 

interlocking geometries that directly guarantee the validity of the 

interlocking instead of exhaustive testing it. The algorithm takes a 

voxelized shape (S) as input and iteratively extracts pieces P1, P2, 

…, Pn. Rn (the remaining part of S) is the last piece ie. S → [P1, 

…, Pn, Rn]. The algorithm requires local interlocking among Pi, 

Pi+1, and the remaining part which is denoted as Ri+1. The idea 

of the algorithm is to pick a seed voxel, ensure its blocking/ 

mobility, and expand the key parts recursively. Wang et al. [16] 

present a general framework for designing interlocking structures 

which use Direction Blocking Graphs and analysis tools. They use 

an algorithm outlined in section 4 to design an interlocking 

assembly from a given shape by generating parts P1,…, Pn, Rn. 

Much like Song et al. [14] first, they generate the key (only 

movable part) and then the parts Pi and Ri (where i>1). The main 

difference between the two approaches is the design of the graphs 

used to ensure interlocking – all previous parts are used as 

opposed to using only the most recently added part. 

 

Song et al. [15] delve further into the matter of generating 

interlocking puzzle pieces while also focusing on their ability to 

be 3D printed. They take a watertight surface mesh as input and 

place a 3D grid within the object’s space to voxelize it. They 

deform the geometry locally to cater to fragments. Neighbouring 

voxel shape connection strength is calculated by analysis local 

shapes and a graph is built. The important features of the model 

are realized on saliency graph. The construction of puzzle pieces 

is guided by the graphs, reassigning boundary voxels (for 

aesthetics) and constructive solid geometry (CSG) intersection. 

Interlocking does not necessarily have to be produced with 

voxelized pieces. This is demonstrated by Lau et al. [9] who 

converted furniture models into parts and connectors using lexical 

and structural analysis. Their algorithm uses lexical analysis to 

identify primitive shapes (processed as tokens). Then, structural 

analysis to generate fabricatable parts and connectors 

automatically. The output of their algorithm can also generate user 

manuals on how to assemble furniture from constituent 

components via the bottom-up approach. 

 

2.3. Curve Matching Approach 

The mapping approach refers to a method of matching puzzle 

pieces by assessing the curves on their edges. This information is 

then processed as input to solve puzzles according to the given 

algorithm. Curve matching normally employs a bottom-up 

approach, assembling target shapes from puzzle pieces. 

 

Kong and Kimia [8] developed algorithms to solve 2D/3D puzzles 

using curve matching. First, they “define an affinity measure for a 

pair of pieces in two stages, one based on a coarse-scale 

representation of curves and one based on a fine-scale elastic 

curve matching method”. The algorithm eliminates pieces with 

overlapping boundaries and forms a rank-ordered list of pairs. The 

puzzle solution is a “recursive grouping of triples using a best-first 

search strategy”. In the case of 3D curve matching, a laser is used 

to scan 3D fragments and the 2D method of curve matching is 

applied over the z-axis. Sagiroglu and Ercil [12] have also 

developed an algorithm for 2D/3D fragment assembly. Their 

algorithm uses visual information such as “texture, colour, and 

continuity of lines” in addition to geometrical information. They 

generate the best assembly of a puzzle by optimizing the affinity 

(or suitability) value. They use an algorithm with parameters such 

as texture and colour to predict the region extending a puzzle 

piece and use that prediction to find a true neighbouring puzzle 

piece. The solution maximizes the correlation between predictions 

and actual puzzle pieces. Their algorithm is outlined at the end of 

section 4 as follows: “1) Place the pieces on board B. 2) Find the 

best transform for a randomly selected piece t using the presented 

method. 3) If there exists a piece that can be moved, go to step 2. 

4) Select a piece and transform it. 5) Go to step 2, until the puzzle 

is uniquely assembled even if all pieces are tried in step 4.” 

 

In 1988, Wolfson et al. [17] solved the assembly of large 2D 

jigsaw puzzles using curve matching and combinatorial 

optimization techniques. Each puzzle piece is photographed and 

immediately fed into the algorithm which assembles an apictorial 

(without a picture) puzzle as the puzzle piece come. The 

algorithm uses only boundary data to match neighbouring puzzle 

pieces. After preprocessing, data is parsed into equations which 

conduct local matching. The puzzle assembly algorithm first 

assembles the frame and then uses it a starting point for the 

assembly of the entire puzzle. In 2002, Goldberg et al. [3] also 

worked on algorithms to assemble 2D apictorial jigsaw puzzles by 

boundary data alone. Their algorithm could solve more complex 



puzzles with a maximum of 200 pieces by applying new 

techniques such as “robust fiducial points, highest-confidence-

first search, and frequent global re-optimization of partial 

solutions”. They found that the fiducial point comparison 

approach of global matching (rejected by Wolfson et al. [17]) was 

significantly faster and more robust to scanning noise. Their 

algorithm works by identifying the inflexion points, ellipse 

centres, and tangent points on a tab (indent or outdent) and 

minimizing the distance between pairs of corresponding points. 

 

2.4. Geometric Design Approach 

Stewart Coffin is widely regarded as the world’s best designer of 

interlocking puzzles. In 1990, he produced a book [1], which 

described interlocking cubes. His book motivated the study of 

geometric mechanics producing interlocking. The geometric 

design approach refers to using lines and curves generated by a 

mathematical equation to generate puzzle pieces. Lo et al. [10] 

used the geometric design approach to generate 3D polyomino 

puzzles. They created shell-based 3D puzzles with polyominoes 

as the component shape of the puzzle pieces. The algorithm works 

as follows; they first apply quad-based surface parametrization to 

the input solid and tile the parametrized surface with 

polyominoes. Then, construct a tiled surface inside the 

parameterized shape to fit inside a thick shell volume. Finally, use 

associated geometric techniques to construct puzzle pieces 

(polyominoes generating via Procedure 1 outlined in section 2), 

including the ring-based ordering scheme, the motion-space 

analysis technique, and the tab and blank construction method. 

The final puzzle must be buildable, and maintainable. 

 

Xin et al. [5] also explored the governing mechanics of 

interlocking puzzles using geometric methods. They replicated 

and connected pre-defined six-piece burr structures to create 

larger interlocking puzzles from 3D models. First, they embed a 

network of knots into a given 3D model. Then, the 3D model is 

split according to its geometry. The method requires one to first 

manually design and construct a grid-based graph inside a given 

3D shape. The method can put a six-piece burr puzzle at each grid 

point and connect them to guarantee the interlocking. Their paper 

describes both a single-knot and multi-know burr puzzle. Zhang 

and Balkcom [18] explore a solution to assemble voxelized 

interlocking structures using joints (pairs of male-female 

connectors on adjacent voxels) to guarantee interlocking and 

assembly order. The algorithm breaks models into layers and 

sequentially builds layers using block types to restrict the mobility 

of puzzle pieces. 

 

3. DISCUSSION OF PREVIOUS 

APPROACHES 
This section discusses the important characteristics of the 3D 

interlocking puzzle algorithms according to our survey of known 

interlockable structures. We will compare and contrast the 

algorithms in terms of applicability and efficiency; that is, how 

relevant the algorithm is to 3D printing and how many 

computational operations (or how much time in seconds) it may 

take to generate the puzzle pieces after the original object (which 

may be represented as a triangular mesh) has been served into the 

algorithm as input. 

 

3.1. Exhaustive Search 

The analyses of Bill Cutler’s algorithms [4] are categorized and 

presented as follows:  

 

Name  Size Author Date Runtime 

Notchabl

e, Solid 

“JRM” 

314 

solutions 

Bill 

Cutler & 

Tom 

O’Beirne 

(manual 

& 

compute

r) 

Fall 

1974 

Not 

available 

General, 

Solid 

“CSIAM

” 

119 979 

solutions 

Bill 

Cutler 

(comput

er) & 

Arthur 

Cross 

(random 

manual 

checking

) 

Winte

r 1975 

5 minutes on 

IBM 

mainframe 

Notchabl

e, Holey 

“NOTC” 

13 354 991 

assemblies 

Bill 

Cutler 

(comput

er) 

26 

March 

1987 

– 6 

June 

1987 

2 months on 

PC AT 

General, 

Holey 

“HB6” 

35 657 131 2

35 

assemblies 

Bill 

Cutler & 

others 

(comput

er) 

Octob

er 

1987 

to 4 

Augus

t 1990 

The 

equivalent 

of 62.5 

years on PC 

AT 

(approximat

ely 2.5 years 

more 

recently) 

 

On average, Rover [11] computes assemblies and dis-assemblies 

in a mere matter of seconds. It is important to note that the 

runtime of exhaustive search algorithms is highly dependent on 

the size of the problem at hand. Exhaustive search algorithms for 

generating puzzles normally run at least n operations (to generate 

or assemble each puzzle piece), where n is the number of elements 

the algorithm has to process. Since the Burr Tools software is not 

open-source, it was not possible to assess its algorithm in detail. 

 

3.2. Construction Approach 

The Song et al. [14] interlocking structure is decentralized and 

thus can adapt more flexibly to complex 3D shapes and 

topologies. It generates recursive interlocking shapes with 

different Ns (number of voxels) and Ks (number of puzzle 

pieces). Their method works with a large variation of Ns and m 

(average puzzle piece size). Time complexity depends on a 

combination of N, K, m and the target shape. Wang et al. [16] 

tests for global interlocking in polynomial time complexity. Their 

approach generates puzzle pieces much faster than the previous 



Song et al. and is more generally applicable. The primary 

disadvantage is the ease of implementation. The latest Song et al. 

[15] uses more or less the same approach with additional aesthetic 

and 3D printing requirements. Their largest structure (11 x 16 x 

11 volume resolution consisting of 20 pieces and 44 973 model 

vertices) took a decent 150 seconds to generate via C++ on a 

3.4GHz CPU with 8GB memory. Lau et al. [9] tested their 

constructive approach of generating 3D furniture models with a 

less than 100% success rate. They claim that adding new 

production rules to cater for the unsuccessful attempts is effective 

in producing a 100% success rate. The average runtime was less 

than 1 second. Voxelization occupied the majority of the runtime. 

 

3.3. Curve Matching Approach 

Kong and Kimia [8] apply their algorithm to the problem of 

reassembling pieces of a broken ceramic tile. The algorithm 

contains a for loop in a triply nested if-statement which can be 

expected to compute at least Big-O of n operations. The Sagiroglu 

and Ercil [12] method’s time complexity is similar to that of Kong 

and Kimia. They assert that the main drawback is that multiple 

solutions to the problem are possible depending on how the puzzle 

pieces are placed on the board. The additional parameters and 

complex equations make it likely to be a relatively slow curve 

matching approach. The time complexity of the algorithm is 

highly dependent on the number of puzzle pieces. 

 

Wolfson et al. [17] state that the time complexity of their 

algorithm is “O(max(K^3, K^2.m log m) + O(N^2 x KBEST x m 

log m), where N is the total number of puzzle pieces, K is the 

number of frame pieces”. O(m) is the number of sample points on 

a boundary curve of a piece. On a Sun Ultra-60 workstation, the 

Goldberg et al. [3] algorithm took approximately 3 minutes and 

20 minutes to solve 100-piece and 204-piece puzzles respectively. 

This can be expected to run in a fraction of the time on a modern 

computer. 

 

3.4. Geometric Design Approach 

Lo et al. [10] used a procedure called Procedure 1 to assess the 

performance of their polyomino tiling algorithm. They used a 

table to show the performance on three different 3D models using 

a Pentium-4 PC with 3GHz CPU and 512MB memory. The table 

showed the time taken to build six different 3D puzzles. Their 

largest polyomino, consisting of 325 tiles, took only 0.29 seconds 

to generate. The Xin et al. [5] method was used to assemble 

various burr puzzles with a varying number of knots and puzzle 

pieces. The MegaBox puzzle model took the longest (1405 

seconds) to assemble given 64 knots (4 x 4 x 4) and 240 pieces. 

The time taken is affected by the nature of the problem at hand as 

well as the number of pieces in the puzzle. Zhang and Balkcom 

[18] implemented their algorithm in Python and ran it on a 

computer with 3.4GHz CPU and 8GB memory. Their most 

complex model (a house consisting of 13104 blocks and 40 

layers) was designed in only 633 milliseconds. Runtime was 

linear relative to the number of voxels. 

 

4. CONCLUSIONS 
Since the advent of 3D printing in the 1980s, little research has 

been done with respect to algorithms for generating interlocking 

3D puzzles. We have explored a few known pieces of research 

which delve into the topic of algorithms which generate 

interlocking 2D and 3D. Below we assess these algorithms 

according to various criteria (in order of appearance): 

 

Algorithm 

Name and 

Author(s) 

Speed of 

puzzle 

generation 

Variability of shape 

generation 

Ease of 

implementation 

IBM 

Research 

(1997) 

Very slow (~ 

2.5 years 

maximum) 

Burr puzzles Fairly simple 

Cutler 

(2007) 

Very slow (~ 

2.5 years 

maximum) 

Six-piece burr 

puzzles 

Fairly simple 

Rover 

(2011) 

Fast Cubes, spheres, 

equilateral triangles, 

tetrahedra 

Not applicable 

(the algorithm is 

unavailable) 

Song et 

al. (2012) 

Slow (534.43 

minutes to 

generate a 

bunny when 

K=150)  

Solid interlocking 

voxelized structures 

Average 

difficulty 

Wang et 

al. (2017) 

Average Wide range of 

interlocking 

assemblies 

Fairly difficult 

Song et 

al. (2015) 

Average Solid interlocking 

voxelized structures 

Fairly difficult 

Lau et al. 

(2011) 

Extremely 

fast (~ > 1 

second) 

Parts and 

connectors 

Very difficult 

Kong and 

Kimia 

(2001) 

Average Applies only to the 

re-assembly of 

broken puzzles 

Fairly difficult 

Sagiroglu 

and Ercil 

(2006) 

Average Applies only to the 

re-assembly of 

broken puzzles 

Difficult 

Wolfson 

et al. 

(1988) 

Slower than 

average (Big-

O of n^3 

maximum) 

2D apictorial jigsaw 

puzzles 

Difficult 

Goldberg 

et al. 

(2002) 

Average  2D apictorial jigsaw 

puzzles 

Difficult 

Lo et al. 

(2009) 

Fairly fast Quad-based 3D 

model surfaces 

Difficult 

Xin et al. 

(2011) 

Average Six-piece 

orthogonal burr 

puzzles with a 

custom 3D model 

outer surface 

Fairly simple 



Zhang 

and 

Balkcom 

(2016) 

Very fast (in 

a matter of 

milliseconds) 

General voxelized 

interlocking 

structures 

Difficult 

 

In assessing the above-mentioned algorithms, it is important to 

take note of the date on which they were published. The vast 

majority of them were published prior to 2016, during a time 

when Moore’s Law still applied. For example, IBM’s PC-AT 

Model 2 (manufactured in the 1980s) had only 512kB of RAM, 

one floppy disk unit and one hard disk.  Modern computers use 

multicore architectures and parallelism to achieve speedup. It is 

only fair to compare the performance of these algorithms on the 

same modern computer to get an accurate representation of how 

they perform relative to each other.  

 

We will proceed to employ the algorithm proposed by Song et al. 

[14] during the implementation phase of the project. This is due to 

its ease of implementation and applicability in solving the 

problem of creating 3D printable recursively interlocking puzzles. 

Song et al. [15] also present an algorithm worthy of consideration. 

Despite being more complex, their algorithm caters for 

aesthetically-pleasing design and 3D printing. Their algorithm is 

arguably the most suitable to date although Zhang and Balkcom’s 

[18] algorithm outperforms most of the others.  Kilian et al. [7] 

proposed a method to construct surfaces with carved folding by 

minimizing the bending energy. Skouras et al. [13] presented an 

algorithm for designing interactive surfaces from “flexible 

interlocking quadrilateral elements of a single size and shape”. 

Should time permit, we will implement such algorithms to add an 

outer surface to our voxelized output shape prior to 

triangularization for 3D printing. 
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